Left Termination of the query pattern count_in_2(g, a) w.r.t. the given Prolog program could successfully be proven:



Prolog
  ↳ PrologToPiTRSProof

Clauses:

flatten(atom(X), .(X, [])).
flatten(cons(atom(X), U), .(X, Y)) :- flatten(U, Y).
flatten(cons(cons(U, V), W), X) :- flatten(cons(U, cons(V, W)), X).
count(atom(X), s(0)).
count(cons(atom(X), Y), s(Z)) :- count(Y, Z).
count(cons(cons(U, V), W), Z) :- ','(flatten(cons(cons(U, V), W), X), count(X, Z)).

Queries:

count(g,a).

We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

count_in(cons(cons(U, V), W), Z) → U4(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
flatten_in(cons(cons(U, V), W), X) → U2(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
flatten_in(cons(atom(X), U), .(X, Y)) → U1(X, U, Y, flatten_in(U, Y))
flatten_in(atom(X), .(X, [])) → flatten_out(atom(X), .(X, []))
U1(X, U, Y, flatten_out(U, Y)) → flatten_out(cons(atom(X), U), .(X, Y))
U2(U, V, W, X, flatten_out(cons(U, cons(V, W)), X)) → flatten_out(cons(cons(U, V), W), X)
U4(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U5(U, V, W, Z, count_in(X, Z))
count_in(cons(atom(X), Y), s(Z)) → U3(X, Y, Z, count_in(Y, Z))
count_in(atom(X), s(0)) → count_out(atom(X), s(0))
U3(X, Y, Z, count_out(Y, Z)) → count_out(cons(atom(X), Y), s(Z))
U5(U, V, W, Z, count_out(X, Z)) → count_out(cons(cons(U, V), W), Z)

The argument filtering Pi contains the following mapping:
count_in(x1, x2)  =  count_in(x1)
cons(x1, x2)  =  cons(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
flatten_in(x1, x2)  =  flatten_in(x1)
U2(x1, x2, x3, x4, x5)  =  U2(x5)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
U1(x1, x2, x3, x4)  =  U1(x1, x4)
[]  =  []
flatten_out(x1, x2)  =  flatten_out(x2)
U5(x1, x2, x3, x4, x5)  =  U5(x5)
s(x1)  =  s(x1)
U3(x1, x2, x3, x4)  =  U3(x4)
0  =  0
count_out(x1, x2)  =  count_out(x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog



↳ Prolog
  ↳ PrologToPiTRSProof
PiTRS
      ↳ DependencyPairsProof

Pi-finite rewrite system:
The TRS R consists of the following rules:

count_in(cons(cons(U, V), W), Z) → U4(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
flatten_in(cons(cons(U, V), W), X) → U2(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
flatten_in(cons(atom(X), U), .(X, Y)) → U1(X, U, Y, flatten_in(U, Y))
flatten_in(atom(X), .(X, [])) → flatten_out(atom(X), .(X, []))
U1(X, U, Y, flatten_out(U, Y)) → flatten_out(cons(atom(X), U), .(X, Y))
U2(U, V, W, X, flatten_out(cons(U, cons(V, W)), X)) → flatten_out(cons(cons(U, V), W), X)
U4(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U5(U, V, W, Z, count_in(X, Z))
count_in(cons(atom(X), Y), s(Z)) → U3(X, Y, Z, count_in(Y, Z))
count_in(atom(X), s(0)) → count_out(atom(X), s(0))
U3(X, Y, Z, count_out(Y, Z)) → count_out(cons(atom(X), Y), s(Z))
U5(U, V, W, Z, count_out(X, Z)) → count_out(cons(cons(U, V), W), Z)

The argument filtering Pi contains the following mapping:
count_in(x1, x2)  =  count_in(x1)
cons(x1, x2)  =  cons(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
flatten_in(x1, x2)  =  flatten_in(x1)
U2(x1, x2, x3, x4, x5)  =  U2(x5)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
U1(x1, x2, x3, x4)  =  U1(x1, x4)
[]  =  []
flatten_out(x1, x2)  =  flatten_out(x2)
U5(x1, x2, x3, x4, x5)  =  U5(x5)
s(x1)  =  s(x1)
U3(x1, x2, x3, x4)  =  U3(x4)
0  =  0
count_out(x1, x2)  =  count_out(x2)


Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

COUNT_IN(cons(cons(U, V), W), Z) → U41(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
COUNT_IN(cons(cons(U, V), W), Z) → FLATTEN_IN(cons(cons(U, V), W), X)
FLATTEN_IN(cons(cons(U, V), W), X) → U21(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
FLATTEN_IN(cons(cons(U, V), W), X) → FLATTEN_IN(cons(U, cons(V, W)), X)
FLATTEN_IN(cons(atom(X), U), .(X, Y)) → U11(X, U, Y, flatten_in(U, Y))
FLATTEN_IN(cons(atom(X), U), .(X, Y)) → FLATTEN_IN(U, Y)
U41(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U51(U, V, W, Z, count_in(X, Z))
U41(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → COUNT_IN(X, Z)
COUNT_IN(cons(atom(X), Y), s(Z)) → U31(X, Y, Z, count_in(Y, Z))
COUNT_IN(cons(atom(X), Y), s(Z)) → COUNT_IN(Y, Z)

The TRS R consists of the following rules:

count_in(cons(cons(U, V), W), Z) → U4(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
flatten_in(cons(cons(U, V), W), X) → U2(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
flatten_in(cons(atom(X), U), .(X, Y)) → U1(X, U, Y, flatten_in(U, Y))
flatten_in(atom(X), .(X, [])) → flatten_out(atom(X), .(X, []))
U1(X, U, Y, flatten_out(U, Y)) → flatten_out(cons(atom(X), U), .(X, Y))
U2(U, V, W, X, flatten_out(cons(U, cons(V, W)), X)) → flatten_out(cons(cons(U, V), W), X)
U4(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U5(U, V, W, Z, count_in(X, Z))
count_in(cons(atom(X), Y), s(Z)) → U3(X, Y, Z, count_in(Y, Z))
count_in(atom(X), s(0)) → count_out(atom(X), s(0))
U3(X, Y, Z, count_out(Y, Z)) → count_out(cons(atom(X), Y), s(Z))
U5(U, V, W, Z, count_out(X, Z)) → count_out(cons(cons(U, V), W), Z)

The argument filtering Pi contains the following mapping:
count_in(x1, x2)  =  count_in(x1)
cons(x1, x2)  =  cons(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
flatten_in(x1, x2)  =  flatten_in(x1)
U2(x1, x2, x3, x4, x5)  =  U2(x5)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
U1(x1, x2, x3, x4)  =  U1(x1, x4)
[]  =  []
flatten_out(x1, x2)  =  flatten_out(x2)
U5(x1, x2, x3, x4, x5)  =  U5(x5)
s(x1)  =  s(x1)
U3(x1, x2, x3, x4)  =  U3(x4)
0  =  0
count_out(x1, x2)  =  count_out(x2)
COUNT_IN(x1, x2)  =  COUNT_IN(x1)
U31(x1, x2, x3, x4)  =  U31(x4)
U51(x1, x2, x3, x4, x5)  =  U51(x5)
U41(x1, x2, x3, x4, x5)  =  U41(x5)
FLATTEN_IN(x1, x2)  =  FLATTEN_IN(x1)
U21(x1, x2, x3, x4, x5)  =  U21(x5)
U11(x1, x2, x3, x4)  =  U11(x1, x4)

We have to consider all (P,R,Pi)-chains

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
PiDP
          ↳ DependencyGraphProof

Pi DP problem:
The TRS P consists of the following rules:

COUNT_IN(cons(cons(U, V), W), Z) → U41(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
COUNT_IN(cons(cons(U, V), W), Z) → FLATTEN_IN(cons(cons(U, V), W), X)
FLATTEN_IN(cons(cons(U, V), W), X) → U21(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
FLATTEN_IN(cons(cons(U, V), W), X) → FLATTEN_IN(cons(U, cons(V, W)), X)
FLATTEN_IN(cons(atom(X), U), .(X, Y)) → U11(X, U, Y, flatten_in(U, Y))
FLATTEN_IN(cons(atom(X), U), .(X, Y)) → FLATTEN_IN(U, Y)
U41(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U51(U, V, W, Z, count_in(X, Z))
U41(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → COUNT_IN(X, Z)
COUNT_IN(cons(atom(X), Y), s(Z)) → U31(X, Y, Z, count_in(Y, Z))
COUNT_IN(cons(atom(X), Y), s(Z)) → COUNT_IN(Y, Z)

The TRS R consists of the following rules:

count_in(cons(cons(U, V), W), Z) → U4(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
flatten_in(cons(cons(U, V), W), X) → U2(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
flatten_in(cons(atom(X), U), .(X, Y)) → U1(X, U, Y, flatten_in(U, Y))
flatten_in(atom(X), .(X, [])) → flatten_out(atom(X), .(X, []))
U1(X, U, Y, flatten_out(U, Y)) → flatten_out(cons(atom(X), U), .(X, Y))
U2(U, V, W, X, flatten_out(cons(U, cons(V, W)), X)) → flatten_out(cons(cons(U, V), W), X)
U4(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U5(U, V, W, Z, count_in(X, Z))
count_in(cons(atom(X), Y), s(Z)) → U3(X, Y, Z, count_in(Y, Z))
count_in(atom(X), s(0)) → count_out(atom(X), s(0))
U3(X, Y, Z, count_out(Y, Z)) → count_out(cons(atom(X), Y), s(Z))
U5(U, V, W, Z, count_out(X, Z)) → count_out(cons(cons(U, V), W), Z)

The argument filtering Pi contains the following mapping:
count_in(x1, x2)  =  count_in(x1)
cons(x1, x2)  =  cons(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
flatten_in(x1, x2)  =  flatten_in(x1)
U2(x1, x2, x3, x4, x5)  =  U2(x5)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
U1(x1, x2, x3, x4)  =  U1(x1, x4)
[]  =  []
flatten_out(x1, x2)  =  flatten_out(x2)
U5(x1, x2, x3, x4, x5)  =  U5(x5)
s(x1)  =  s(x1)
U3(x1, x2, x3, x4)  =  U3(x4)
0  =  0
count_out(x1, x2)  =  count_out(x2)
COUNT_IN(x1, x2)  =  COUNT_IN(x1)
U31(x1, x2, x3, x4)  =  U31(x4)
U51(x1, x2, x3, x4, x5)  =  U51(x5)
U41(x1, x2, x3, x4, x5)  =  U41(x5)
FLATTEN_IN(x1, x2)  =  FLATTEN_IN(x1)
U21(x1, x2, x3, x4, x5)  =  U21(x5)
U11(x1, x2, x3, x4)  =  U11(x1, x4)

We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 2 SCCs with 5 less nodes.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
PiDP
                ↳ UsableRulesProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

FLATTEN_IN(cons(atom(X), U), .(X, Y)) → FLATTEN_IN(U, Y)
FLATTEN_IN(cons(cons(U, V), W), X) → FLATTEN_IN(cons(U, cons(V, W)), X)

The TRS R consists of the following rules:

count_in(cons(cons(U, V), W), Z) → U4(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
flatten_in(cons(cons(U, V), W), X) → U2(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
flatten_in(cons(atom(X), U), .(X, Y)) → U1(X, U, Y, flatten_in(U, Y))
flatten_in(atom(X), .(X, [])) → flatten_out(atom(X), .(X, []))
U1(X, U, Y, flatten_out(U, Y)) → flatten_out(cons(atom(X), U), .(X, Y))
U2(U, V, W, X, flatten_out(cons(U, cons(V, W)), X)) → flatten_out(cons(cons(U, V), W), X)
U4(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U5(U, V, W, Z, count_in(X, Z))
count_in(cons(atom(X), Y), s(Z)) → U3(X, Y, Z, count_in(Y, Z))
count_in(atom(X), s(0)) → count_out(atom(X), s(0))
U3(X, Y, Z, count_out(Y, Z)) → count_out(cons(atom(X), Y), s(Z))
U5(U, V, W, Z, count_out(X, Z)) → count_out(cons(cons(U, V), W), Z)

The argument filtering Pi contains the following mapping:
count_in(x1, x2)  =  count_in(x1)
cons(x1, x2)  =  cons(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
flatten_in(x1, x2)  =  flatten_in(x1)
U2(x1, x2, x3, x4, x5)  =  U2(x5)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
U1(x1, x2, x3, x4)  =  U1(x1, x4)
[]  =  []
flatten_out(x1, x2)  =  flatten_out(x2)
U5(x1, x2, x3, x4, x5)  =  U5(x5)
s(x1)  =  s(x1)
U3(x1, x2, x3, x4)  =  U3(x4)
0  =  0
count_out(x1, x2)  =  count_out(x2)
FLATTEN_IN(x1, x2)  =  FLATTEN_IN(x1)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof
              ↳ PiDP

Pi DP problem:
The TRS P consists of the following rules:

FLATTEN_IN(cons(atom(X), U), .(X, Y)) → FLATTEN_IN(U, Y)
FLATTEN_IN(cons(cons(U, V), W), X) → FLATTEN_IN(cons(U, cons(V, W)), X)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
FLATTEN_IN(x1, x2)  =  FLATTEN_IN(x1)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ UsableRulesReductionPairsProof
              ↳ PiDP

Q DP problem:
The TRS P consists of the following rules:

FLATTEN_IN(cons(cons(U, V), W)) → FLATTEN_IN(cons(U, cons(V, W)))
FLATTEN_IN(cons(atom(X), U)) → FLATTEN_IN(U)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

FLATTEN_IN(cons(cons(U, V), W)) → FLATTEN_IN(cons(U, cons(V, W)))
FLATTEN_IN(cons(atom(X), U)) → FLATTEN_IN(U)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [25]:

POL(FLATTEN_IN(x1)) = 2·x1   
POL(atom(x1)) = x1   
POL(cons(x1, x2)) = 2 + 2·x1 + x2   



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ PisEmptyProof
              ↳ PiDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
PiDP
                ↳ UsableRulesProof

Pi DP problem:
The TRS P consists of the following rules:

COUNT_IN(cons(atom(X), Y), s(Z)) → COUNT_IN(Y, Z)
U41(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → COUNT_IN(X, Z)
COUNT_IN(cons(cons(U, V), W), Z) → U41(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))

The TRS R consists of the following rules:

count_in(cons(cons(U, V), W), Z) → U4(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))
flatten_in(cons(cons(U, V), W), X) → U2(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
flatten_in(cons(atom(X), U), .(X, Y)) → U1(X, U, Y, flatten_in(U, Y))
flatten_in(atom(X), .(X, [])) → flatten_out(atom(X), .(X, []))
U1(X, U, Y, flatten_out(U, Y)) → flatten_out(cons(atom(X), U), .(X, Y))
U2(U, V, W, X, flatten_out(cons(U, cons(V, W)), X)) → flatten_out(cons(cons(U, V), W), X)
U4(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → U5(U, V, W, Z, count_in(X, Z))
count_in(cons(atom(X), Y), s(Z)) → U3(X, Y, Z, count_in(Y, Z))
count_in(atom(X), s(0)) → count_out(atom(X), s(0))
U3(X, Y, Z, count_out(Y, Z)) → count_out(cons(atom(X), Y), s(Z))
U5(U, V, W, Z, count_out(X, Z)) → count_out(cons(cons(U, V), W), Z)

The argument filtering Pi contains the following mapping:
count_in(x1, x2)  =  count_in(x1)
cons(x1, x2)  =  cons(x1, x2)
U4(x1, x2, x3, x4, x5)  =  U4(x5)
flatten_in(x1, x2)  =  flatten_in(x1)
U2(x1, x2, x3, x4, x5)  =  U2(x5)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
U1(x1, x2, x3, x4)  =  U1(x1, x4)
[]  =  []
flatten_out(x1, x2)  =  flatten_out(x2)
U5(x1, x2, x3, x4, x5)  =  U5(x5)
s(x1)  =  s(x1)
U3(x1, x2, x3, x4)  =  U3(x4)
0  =  0
count_out(x1, x2)  =  count_out(x2)
COUNT_IN(x1, x2)  =  COUNT_IN(x1)
U41(x1, x2, x3, x4, x5)  =  U41(x5)

We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
PiDP
                    ↳ PiDPToQDPProof

Pi DP problem:
The TRS P consists of the following rules:

COUNT_IN(cons(atom(X), Y), s(Z)) → COUNT_IN(Y, Z)
U41(U, V, W, Z, flatten_out(cons(cons(U, V), W), X)) → COUNT_IN(X, Z)
COUNT_IN(cons(cons(U, V), W), Z) → U41(U, V, W, Z, flatten_in(cons(cons(U, V), W), X))

The TRS R consists of the following rules:

flatten_in(cons(cons(U, V), W), X) → U2(U, V, W, X, flatten_in(cons(U, cons(V, W)), X))
U2(U, V, W, X, flatten_out(cons(U, cons(V, W)), X)) → flatten_out(cons(cons(U, V), W), X)
flatten_in(cons(atom(X), U), .(X, Y)) → U1(X, U, Y, flatten_in(U, Y))
U1(X, U, Y, flatten_out(U, Y)) → flatten_out(cons(atom(X), U), .(X, Y))
flatten_in(atom(X), .(X, [])) → flatten_out(atom(X), .(X, []))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
flatten_in(x1, x2)  =  flatten_in(x1)
U2(x1, x2, x3, x4, x5)  =  U2(x5)
atom(x1)  =  atom(x1)
.(x1, x2)  =  .(x1, x2)
U1(x1, x2, x3, x4)  =  U1(x1, x4)
[]  =  []
flatten_out(x1, x2)  =  flatten_out(x2)
s(x1)  =  s(x1)
COUNT_IN(x1, x2)  =  COUNT_IN(x1)
U41(x1, x2, x3, x4, x5)  =  U41(x5)

We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.

↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
QDP
                        ↳ UsableRulesReductionPairsProof

Q DP problem:
The TRS P consists of the following rules:

COUNT_IN(cons(cons(U, V), W)) → U41(flatten_in(cons(cons(U, V), W)))
COUNT_IN(cons(atom(X), Y)) → COUNT_IN(Y)
U41(flatten_out(X)) → COUNT_IN(X)

The TRS R consists of the following rules:

flatten_in(cons(cons(U, V), W)) → U2(flatten_in(cons(U, cons(V, W))))
U2(flatten_out(X)) → flatten_out(X)
flatten_in(cons(atom(X), U)) → U1(X, flatten_in(U))
U1(X, flatten_out(Y)) → flatten_out(.(X, Y))
flatten_in(atom(X)) → flatten_out(.(X, []))

The set Q consists of the following terms:

flatten_in(x0)
U2(x0)
U1(x0, x1)

We have to consider all (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

COUNT_IN(cons(cons(U, V), W)) → U41(flatten_in(cons(cons(U, V), W)))
COUNT_IN(cons(atom(X), Y)) → COUNT_IN(Y)
The following rules are removed from R:

flatten_in(cons(cons(U, V), W)) → U2(flatten_in(cons(U, cons(V, W))))
flatten_in(cons(atom(X), U)) → U1(X, flatten_in(U))
U2(flatten_out(X)) → flatten_out(X)
flatten_in(atom(X)) → flatten_out(.(X, []))
U1(X, flatten_out(Y)) → flatten_out(.(X, Y))
Used ordering: POLO with Polynomial interpretation [25]:

POL(.(x1, x2)) = x1 + x2   
POL(COUNT_IN(x1)) = 2 + x1   
POL(U1(x1, x2)) = 1 + 2·x1 + x2   
POL(U2(x1)) = 1 + x1   
POL(U41(x1)) = 1 + x1   
POL([]) = 0   
POL(atom(x1)) = 1 + 2·x1   
POL(cons(x1, x2)) = 2 + 2·x1 + x2   
POL(flatten_in(x1)) = x1   
POL(flatten_out(x1)) = 1 + 2·x1   



↳ Prolog
  ↳ PrologToPiTRSProof
    ↳ PiTRS
      ↳ DependencyPairsProof
        ↳ PiDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ PiDP
              ↳ PiDP
                ↳ UsableRulesProof
                  ↳ PiDP
                    ↳ PiDPToQDPProof
                      ↳ QDP
                        ↳ UsableRulesReductionPairsProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

U41(flatten_out(X)) → COUNT_IN(X)

R is empty.
The set Q consists of the following terms:

flatten_in(x0)
U2(x0)
U1(x0, x1)

We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.